_.___.;fl.,-_

Why should we test?

» Spend less time debugging ®
 Reduce fear of changing
« Good documentation LL]

* Cyclic feedback -> can help for design decisions C

What we test?

ShoppingCardShould {

@Test
® Te st be h avior haveSizelWhenAddToCardCalled(){
ShoppingCard shoppingCard = ShoppingCard()
Product item = Product()

shoppingCard.addToCard(item)

* Give a test a meaningful name

ossertEguals(1, shoppingCard.getlList().size())
}_
* Avoid eTest
haveOneProductInWhenAdded(){
° using technical names ShoppingCard shoppingCard = ShoppingCard()
. . . . Product item = Product()
* leaking implementation details
g A . shoppingCard.addToCard(item)
e writing technical tests - test de behavior!
ossertEquals(1, shoppingCard.size())
}_

How we test?

Follow the - - refactor cycle

Red phase -> Write a failing test

Green phase -> Write enough to pass the test

Refactor phase -> Refactor the code

1. 'Red’

Repeat with
next Test

o

2. 'Green' 3. Refactor

Write a failing test

See the test fail for the right reason

Write the assertations first a work backwards

Ensure the feedback of the failing test is
meaningful

* Write the simplest code to pass

* Any code
* Improvements on next stage

* Red -> green
* Fake it
e Obvious implementation
* Triangulation

Refactor phase

Refactor aggressively [l[]

Refactor with the IDE

Refactor production and test code
independently

Use the rule of three

Every TDD expert has small feet

* Make progress in small steps
* Not the fastest but the safest way

e Speed up the TDD process a lot

 Skip steps -> missing benefits

DD in real

ITe

okc;y you can

oqu nice so test failed...

Now wé cah Start
building the bridge!

