TDD Impressions

TDD. Yes, but what do we test
BEHAVIOUR not implementation




Transformation Priority Premise

 Fake implementation -

Hardcode exactly the value.

* Triangulation with next test —

Use it on the way to a more generic solution until the implementation gets obvious. Go from one
dimension to another.

e Obvious implementation



Code evolution

# | Transformation Starting code Final Code

1 |{} - nil return nil

2 |nil - constant return nil return “1”

3 |constant - constant+ return “1” return “1” + “2”

4 |constant - scalar return “1” + “2” return argument

5 |statement - statements return argument return arguments

6 |unconditional - conditional return arguments if(condition) return arguments
7 |scalar - array dog [dog, cat]

8 |array - container (map) [dog, cat] {dog = “DOG”, cat = “CAT"}
9 |statement — recursion a+b a + recursion

10 |conditional - loop if(condition) while(condition)

11 |recursion - tail recursion a + recursion recursion

12 |expression - function today - birthday calculateAge()

13 |variable - mutation day int day = 10; day = 11;

14 |switch case




Parameterized tests

lll1,\n2IlI’
"'1\“,2'",
lll1’,2I|l

public void

calculator

invalidInput

4

class,



Object Calisthenics rules

* Wrap all primitives and strings
 So we have an explicit type with a name. The value control and access can be easily managed.

* Wrap all collections

* Collection specific behaviour is on a single place. The internal representation is not effected by
the rest.



Limits of TDD

Algorithms

| tried to calculate all permutation of a set of chars and failed. ChatGPT helped me with the
algorithm. The written unit tests helped me to validate the code.

Efficiency (memory and cpu)

The drawback of the obvious code can be reduces performance. Anyway, in most cases this
does not matter and is not worth the optimisation. (e.g. A map is less efficient than an array)

Forget a fake implementation in the productive code

It can happen that a fake implementation is forgotten in the code as we always commit after a
passing test.

Start too fast with implementation. No big picture.

More refactoring steps are needed because of intentionally wrong interface methods.



Conclusion (so far)

+ Higher code readability
+ Confidence about functionality

+ Methods to solve complex challenges
(Baby steps, Triangulation)

+ Decreased code complexity
+ Encapsulated responsibility
+ Reduces noise

- Slow process

- Missing big picture



2.0

Questions?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

