
CUPID

for joyful coding

PATRICK PFEIFER

RECYCLING

A BLOG POST

BY

DAN NORTH

Credit

9/3/20XX Presentation Title 2

https://dannorth.net/

https://dannorth.net/2022/02/10/cupid-for-joyful-coding/

“Daniel is the originator of Behaviour-Driven

Development, an agile approach to software

development that encourages teams to deliver

the software that matters by emphasising the

interactions between stakeholders.”

https://dannorth.net/
https://dannorth.net/2022/02/10/cupid-for-joyful-coding/
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development

CUPID

• C omposable

• U NIX philosophy

• P redictable

• I diomatic

• D omain-based

Presentation Title 3

Motivation

9/3/20XX Presentation Title 4

• Properties over principles !

• Properties of properties ?

• practical

• human

• layered

C omposable

17/02/2023 CUPID – for joyful coding 5

•Small surface area

• Intention-revealing

•Minimal dependencies

U NIX-philosophy

• A simple, consistent

model

• Single purpose vs. single

responsibility

17/02/2023 CUPID – for joyful coding 6

P redictable

17/02/2023 CUPID – for joyful coding 7

•Behaves as expected

•Deterministic

•Observable

I diomatic

17/02/2023 CUPID – for joyful coding 8

•Language idioms

•Local idioms

$ python

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Domain-based

17/02/2023 CUPID – for joyful coding 9

•~ language

•~ structure

•~ boundaries
https://blog.jooq.org/why-you-should-not-implement-layered-architecture/

https://blog.jooq.org/why-you-should-not-implement-layered-architecture/

Credit

9/3/20XX Presentation Title 10

https://dannorth.net/

https://dannorth.net/2022/02/10/cupid-for-joyful-coding/

“Daniel is the originator of Behaviour-Driven

Development, an agile approach to software

development that encourages teams to deliver

the software that matters by emphasising the

interactions between stakeholders.”

https://dannorth.net/
https://dannorth.net/2022/02/10/cupid-for-joyful-coding/
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development

Thank you

Patrick Pfeifer

patrick@patrickpfeifer.net

- PFiver@mastodon.social

- Twitter, GitHub, Linkedin: PFiver

	Slide 1: CUPID for joyful coding
	Slide 2: Credit
	Slide 3: CUPID
	Slide 4: Motivation
	Slide 5: C omposable
	Slide 6: U NIX-philosophy
	Slide 7: P redictable
	Slide 8: I diomatic
	Slide 9: Domain-based
	Slide 10: Credit
	Slide 11: Thank you

