
Test Driven 
Development

SOLID Principles and code smells

Rune Holen / Bouvet



SOLID principles:

Single Responsibility
Open-Closed

Liskov substitution

Interface segregation

Dependency Inversion



Code smells
Avoiding different code smells, increases readability and decreases chance of unexpected effects (errors).

Dispensables
Lazy class – A class, which does too little. Possibly placehoder?

Data class – Special case of lazy class – only having data, no behaviour

Speculative Generality – unused class, method, field or parameter.

Comments – better than commenting what is done - create a method, which is named accordingly

Dead Code – Deleted code has no bugs and significantly improves readability

Duplicated Code – Disturbs readability and forces changes to be performed several times



Method coupling premise

--> Reduce amount of parameters 
to relevant scope by creating new
wrapper function with fewer
parameters..

Script example – amend deals in one
strategy. This could be simplified by 
creating a new method with name: 
UpdateM2mOnFutures(deal_reference);

All parameters required by signature of
pk_deal.DummyAmendDeal() can be 
encapsulated in simpler function with
appropriate name.

Code smells
Dispensables - continued



Code smells

Couplers

Feature Envy – Don’t use features or 
fields/variables, which belong to a 
different scope

Inappropriate Intimacy – special case of
feature envy when a method/class uses
fields/methods from other classes.



Code smells
Couplers – continued

Feature Envy

Call to function in BO package means this
view is depending on this package (which
we are going to retire!) and the schema, 
where view is defined requires GRANT 

privilege to be able to grant read access to 
this foreign function to users of view.



Code smell - BLOATERS

Code smell - BLOATERS

Code smells

Bloaters:

Long method – hard to read and 
risk of side effects. Use shorter, 
specific methods

Large class – One responsibility. 
Don’t try to fix everything in one
class.

Long parameter list – makes it 
hard to invoke method correctly

Long method with very long parameter 
list makes it very hard to use



Questions?

rune.holen@bouvet.no


