





First developed by Robe ;
Principles and Design Patterns,”

The actual ‘SOLID' acronym was coined later by Michael Feathers.

They describe the way classes in OOD relate to one another , about the

dependencies between those classes and the motivations for creating those
dependencies



HOW it does it.

Can often improve the design of software by separating ou
HOW.

Multipurpose tools don't perform well as dedicated tools

N

>
Q)"

D/




Persistence Logging Validation Business Logic

Responsibilities can change at different times for different reasons




—

(when two (or mo
difficult to change)

* Improves COHESION
(grouping class elements that belong together — separating out ones
that don’'t)

» Helps adhere to the ‘Separation of Concerns’ principle
(Programs should be separated into distinct sections addressing @
separate concern or set of information)



SINGLE RESPONSIBILITY

Example violation:

class User

{

void CreatePost(Database db, string postMessage)

db.Add(postMessage);

1
I

catch (Exception ex)

{

db.LogError{"An error occured: ", ex.ToString());

File.WriteAllText("\LocalErrors.txt", ex.ToString());

class Post

{

private ErrorLogger errorlogger = new ErrorlLogger();

void CreatePost(Database db, string postMessage)

db.Add{postMessage);
1
¥
catch (Exception ex)
{

errorLogger. log(ex.ToString())

class Errorlogger
void log(string error)

{

db.LogError("An error occured:

, error);

File.WriteAllText{"\LocalErrors.txt", error);




Source Ccoaqae

Open for extension: Closed for modification:

New behaviour can be Unnecessary to change the
added in future source or binary code

Code that is closed for extension has fixed behaviour

The only way to change the behaviour of code closed to extension is to
MODIFY the code itself



Extreme albstr

Exireme concreteness

Does exactly one thing, one way. The Can do anything, doesn’t do anything itself.
only way to change it's behaviour, is All its functionality is passed into if.
to change it's code




« Can build a new class fo
- eqsier testing
- SRP adherence
- nothing will depend on it
- add behaviour without touching existing code

« Oftenresults in simpler code — fewer conditionals



OPEN/CLOSED

Example violation

class Post
{
void CreatePost(Database db, string postMessage)
void CreatePost(Database db, string postMessage) {
{ db.Add(postMessage);
if (postMessage.StartsWith("#"))
{
db.AddAsTag({postMessage);
class TagPost : Post

{

override void CreatePost(Database db, string postMessage)

db.Add(postMessage); {

db.AddAsTag({postMessage);




The ‘IS-A’ relationship is insufficient,
and should be replaced with ‘IS-
SUBSTITUTABLE-FOR’




Fewer bugs



public class Square

{

: Rectangle

public class Rectangle

{

private int _height;
public override int Height

{

public virtual int Height { get; set; }
public virtual int Width { get; set; }

get { return _height; }

set
public class AreaCalculator {
{ _width = value:
public static int CalculateArea(Rectangle r) _height = value;
t }

return r.Height * r.Width;

}

} // Width implemented similarly

Rectangle myRect = new Square();
myRect .Width = 4;

myRect.Height = 5;
Assert.Equal(20, AreaCalculator.CalculateArea(myRect));

// Actual Result: 25



public class Rectangle

{

public class Rectangle

y public int Height { get; set; }

public int Width { get; set; }

public int Height { get; set; }
public int Width { get; set; }

}

public class Square

{
}

public bool IsSquare => Height == Width;

public int Side { get; set; }



LISKOV SUBSTITUTION

class Post

{

void CreatePost(Database db, string postMessage)

1
db.Add(postMessage);

class TagPost : Post

{

override void CreatePost(Database db, string postMessage)

{
db.AddAsTag(postMessage);

class MentionPost : Post

{

void CreateMentionPost({Database db, string postMessage)

{

string user = postMessage.parselUser();

db.NotifyUser(user);
db.OverrideExistingMention{user, postMessage);

base.CreatePost(db, postMessage);

Example violation

class MentionPost : Post

{

override void CreatePost(Database db, string postMessage)

{

string user = postMessage.parselser();

NotifyUser{user);

OverrideExistingMention{user, postMessage)

base.CreatePost({db, postMessage);

private void NotifyUser(string user)

{
db.NotifyUser(user);

private void OverrideExistingMention{string user, string postMessage)

{

db.OverrideExistingMention(_ user, postMessage);




Whats an
interface in terms
of the ISP¢

Interface
segregation
principle

Whatever can be accessed by calling coc
with an instance of that type

Large interfaces are harger to

Liskov fully implement, more Jikely to

substitution only be partially imptemented

principle and not substitutable for their
base type




Easier to change or ¢
More resilient code - less likely for things to break

Enables easier testing



INTERFACE SEGREGATION

Example violation

interface IPost
I
L
vold CreatePost();

h

interface IPostNew

I
L

vold CreatePost();

void ReadPost();

Try to avoid adding
additional functionality to
an existing interface by
adding new methods

interface IPostlreate

vold CreatePost();

s
¥

interface IPostRead
i

void ReadPost();

Create new
inferface and let
class inherit multiple
intferfaces if needed



High-level

- More abstract

- Business rules

- More process orientated than
detail orientated

Further from input/output
e.g. forms, buttons, files,
databases etc.

Concerned with where
input/output — where is the
information coming from and in
what formate

Plumbing code — to connect
business logic to external aspecy



Interfaces
- No implementation code
- need to provide the
Implementations within the class
that implements interface

— . @, o L

- Abstract methods wi
implemented by child classes

Separation of concerns — keep plumbing code separate from high level
business logic

A way to decouple software modules



	Slide 1: S.O.L.I.D
	Slide 2
	Slide 3: Origin
	Slide 4: Single Responsibility
	Slide 5: Single Responsibility
	Slide 6: Single Responsibility
	Slide 7: Single Responsibility
	Slide 8: OPEN/CLOSED
	Slide 9: OPEN/CLOSED
	Slide 10: OPEN/CLOSED
	Slide 11: OPEN/CLOSED
	Slide 12: Liskov substitution
	Slide 13: Liskov substitution
	Slide 14: Liskov substitution
	Slide 15: Liskov substitution
	Slide 16: Liskov substitution
	Slide 17: Interface segregation
	Slide 18: Interface segregation
	Slide 19: Interface segregation
	Slide 20: Dependency inversion
	Slide 21: Dependency inversion

