
S.O.L.I.D
5 PRINCIPLES FOR CLEAN CODE



S

O

L

I

D

Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion



ORIGIN

The SOLID principles control the relationships and operations between 

classes in object orientated languages

First developed by Robert C. Martin aka ‘Uncle Bob’ in a 2000 essay, “Design 

Principles and Design Patterns,” 

The actual ‘SOLID’ acronym was coined later by Michael Feathers.

They describe the way classes in OOD relate to one another , about the 

dependencies between those classes and the motivations for creating those 

dependencies



SINGLE RESPONSIBILITY

“Each software module should only have one reason to change.”

The individual classes and methods define WHAT the application does, and 

HOW it does it.

Can often improve the design of software by separating out the WHAT from the 

HOW.

Multipurpose tools don’t perform well as dedicated tools



SINGLE RESPONSIBILITY

What is a responsibility?

Decision the code is making about the specific implementation details 

of some part of what the application does e.g:

Persistence Logging Validation Business Logic

Responsibilities can change at different times for different reasons



SINGLE RESPONSIBILITY

Advantages

• Helps reduce tight COUPLING 

(when two (or more) details are bound together in a way that’s 

difficult to change)

• Improves COHESION 

(grouping class elements that belong together – separating out ones 

that don’t)

• Helps adhere to the ‘Separation of Concerns’ principle

(Programs should be separated into distinct sections addressing a 

separate concern or set of information)



SINGLE RESPONSIBILITY

Example violation:



OPEN/CLOSED

“Software entities should be open for extension, but closed for modification”

It should be possible to change the behaviour of a method without editing its 

source code

Open for extension:

New behaviour can be 

added in future

Closed for modification:

Unnecessary to change the 

source or binary code

Code that is closed for extension has fixed behaviour

The only way to change the behaviour of code closed to extension is to 

MODIFY the code itself



OPEN/CLOSED

Need to balance abstraction/extensibility and concreteness

Extreme concreteness

Does exactly one thing, one way. The 

only way to change it’s behaviour, is 

to change it’s code

Extreme abstraction/extensibility

Can do anything, doesn’t do anything itself. 

All its functionality is passed into it.



OPEN/CLOSED

Advantages

• Less likely to introduce bugs in code that isn’t touched/redeployed

• Can build a new class for new features, which enables:
- easier testing 

- SRP adherence

- nothing will depend on it

- add behaviour without touching existing code

• Often results in simpler code – fewer conditionals



OPEN/CLOSED

Example violation



LISKOV SUBSTITUTION

“Subtypes must be substitutable for their base types”

BIRD
LSP states

The ‘IS-A’ relationship is insufficient, 

and should be replaced with ‘IS-

SUBSTITUTABLE-FOR’

IS-A relationship:



LISKOV SUBSTITUTION

Advantages

Helps us properly use inheritance

Fewer bugs



LISKOV SUBSTITUTION The square/rectangle example



LISKOV SUBSTITUTION The square/rectangle solutions



LISKOV SUBSTITUTION Example violation



INTERFACE SEGREGATION

“Clients (calling code) should not be forced to depend on methods 
they do not use”

Small cohesive interfaces are preferential to large fat ones.

Whats an 

interface in terms 

of the ISP?

Whatever can be accessed by calling code working 

with an instance of that type

Interface 

segregation 

principle

Liskov

substitution 

principle

Large interfaces are harder to 

fully implement, more likely to 

only be partially implemented 

and not substitutable for their 

base type



INTERFACE SEGREGATION

Advantages

Encourages loose coupling

Easier to change or swap out individual implementations

More resilient code – less likely for things to break

Enables easier testing



INTERFACE SEGREGATION

Example violation

Try to avoid adding 

additional functionality to 

an existing interface by 

adding new methods

Create new 

interface and let 

class inherit multiple 

interfaces if needed



DEPENDENCY INVERSION

High-level modules should not depend on low-level modules. Both 

should depend on abstractions.

High-level Low-level

- More abstract

- Business rules

- More process orientated than 

detail orientated

Further from input/output

e.g. forms, buttons, files, 

databases etc.

Concerned with where 

input/output – where is the 

information coming from and in 

what format?

Plumbing code – to connect 

business logic to external aspects



DEPENDENCY INVERSION

Abstractions should not depend on details – details should depend on 

abstractions

Interfaces

- No implementation code

- need to provide the 

implementations within the class 

that implements interface

Abstract base classes 

– has one or more abstract embers

- Abstract methods within, must be 

implemented by child classes

Separation of concerns – keep plumbing code separate from high level 

business logic

A way to decouple software modules


	Slide 1: S.O.L.I.D
	Slide 2
	Slide 3: Origin
	Slide 4: Single Responsibility
	Slide 5: Single Responsibility
	Slide 6: Single Responsibility
	Slide 7: Single Responsibility
	Slide 8: OPEN/CLOSED
	Slide 9: OPEN/CLOSED
	Slide 10: OPEN/CLOSED
	Slide 11: OPEN/CLOSED
	Slide 12: Liskov substitution
	Slide 13: Liskov substitution
	Slide 14: Liskov substitution
	Slide 15: Liskov substitution
	Slide 16: Liskov substitution
	Slide 17: Interface segregation
	Slide 18: Interface segregation
	Slide 19: Interface segregation
	Slide 20: Dependency inversion
	Slide 21: Dependency inversion

