
Refactoring
Mark Reed



Introduction

TDD is defined at a high level as a process of Red-Green-Refactor

To get from Red to Green after faking and triangulating we should write 

the most obvious implementation

What is the point in risking breaking anything by fiddling with it after 

that?

13/04/2023 REFACTORING 2



It already works

13/04/2023 REFACTORING 3



But…

13/04/2023 REFACTORING 4



‘If it ain't broke, don't fix it’ is the slogan of 

the complacent, the arrogant or the scared. 

It's an excuse for inaction, a call to non-arms.

Colin Powell

13/04/2023 REFACTORING 5



Why?
Why should we refactor



A Metaphor

13/04/2023 REFACTORING 7

A popular metaphor for refactoring is 
washing up.



Why Refactor? - Technical Benefits

4/13/2023 REFACTORING 8

Readability

Extensibility

Performance

Easier to locate any bugs

Lower cost of 

change

Lower total cost of 

ownership



Why Refactor? - Personal Benefits

13/04/2023 REFACTORING 9

It is highly satisfying – like a video game in itself

Allows you to take professional pride in what you are doing

You may be the guy needing to understand the code or 
extend it in the future

Greater sense of 

job satisfaction



How?
How should we refactor



How to refactor?

Aggressively

Focus on readability first

The IDE is your friend (Rename, Extract, Inline, Remove etc.)

Stay green, use parallel change

Keep going until you are happy that you can refactor no more

Don’t be scared to revisit existing code and refactor that if you 
spot anything that you think could be improved (as long as it is 
under test)

13/04/2023 REFACTORING 11



When?
When should we refactor



When to refactor?

Constantly 

You are green

You break the rule of 3

You are breaking object calisthenics rules

You spot a code smell

You have a domain insight

13/04/2023 REFACTORING 13



Summary 

Refactoring is an essential part of evolving a good software design.

It is not a vanity project for developers to indulge themselves in some irrelevant optimization just to feel pleased with themselves. 

Without it, we can have a working solution,

but it won’t be easily maintainable

or extensible 

and that will make anyone who has to work on it: 

slower, 

more error prone 

and ultimately miserable.

13/04/2023 REFACTORING 14



Questions?



Thank you
Mark Reed​

mark.reed@fdbhealth.co.uk


