
Test doubles
and why they are important



Why Test Doubles?

Some benefits:

● Allows us to isolate the system we 
are testing from other parts of the 
system so that we can investigate 
the behaviour of the system under 
test

● Increases speed of test
● Is always available
● Avoids undesirable side effects of 

interfacing dependant systems
● Cheap and easy to implement
● Gives us access to data or states 

that otherwise might not be available

“Test doubles are 
indispensable tools for 

testing across architectural 
boundaries. Mocking is a 
good practice in general.”

Robert C Martin



What are Test Doubles?

Stubs

● Responds to calls with pre-programmed 
output

● Must be set up for each test

Fakes

● Handmade Stubs

Mocks

● Enables verification of calls they are 
expected to receive.

● Provides a way of verifying behaviour

Spies

● Handmade Mocks

Functions or code created with the purpose of verifying behaviour of production code. Test doubles are 
used to limit the system under test so that specific behaviour may be verified.



Commands and Queries

Two categories of abstractions with two types of methods:

● Command methods changes the state of the system, but does not return or 
report the state

● Query methods tells us about the state of the system - without modifying it.



Stubs vs Mocks

We use Stubs for queries: 

● A query just returns data and should not 
affect or change the system under test

● A stub returns some pre-programmed 
output when called in the expected way

We use Mocks for commands:

● A command is a method call that changes 
the state of the system under test

● A mock is used to confirm that a 
command has been triggered as expected

While a Stub simulates real objects with the minimum methods needed for a test, Mock objects are used 
to check if the correct techniques and paths are applied to the objects



Use Test Doubles for classes that you own:

● Implement an abstraction layer (proxy) 
between your System under test (SUT) 
and external services 

Guidelines (1)

Verify as little as possible:

● Specification should be as precise as 
possible, but not more precise

Tests that verifies too much tends to check 
implementation details rather than behaviour. 
This causes the test to be fragile and is more 
likely to fail for unrelated changes 

SUT

Proxy

Ext Rest 
API



Do not use Test Doubles for isolated objects:

● Objects that has no collaborators with 
other objects in the system should not be 
tested using Mocks or Stubs.

● Aggregates, entities and domain model in 
general are typically object without 
collaborators.

Guidelines (2)

Don’t add behavior inside Test Doubles:

● Mock objects should not add any 
additional complexity to the test 
environment

● Behaviour should be obvious and self 
explanatory

● Behaviour added to Mock objects might be 
a symptom of misplaced responsibilities



Only use Test Doubles for immediate 
neighbours:

● Objects that has to pass through several 
other objects to complete behaviour will be 
fragile due to many dependencies over 
several abstraction layers.

● In these cases the design might be 
improved looking for code smells like 
Feature Envy, Inappropriate Intimacy and 
Message Chain.

Guidelines (3)

The same class CAN act BOTH as a Stub and 
a Mock:

● What type of Test Double to use is decided 
at method level

● Depending on the method we are 
considering it might be a Stub or a Mock



DevOps Metrics Action

GitHub Action

● Typescript
● Jest testing 

framework
● 85-90% test 

coverage



Architecture

DeployFrequency

LeadTime

ChangeFailureRate

MeanTimeToRestore

Action

ReleaseAdapter

GitHub 
Rest 
API

PullRequestAdapter
IPullReques
tsPort

IssuesAdapterIIssues
Port

CommitsAdapterICommits
Port

IReleaseP
ort



Stub

Testing the release adapter

● Arrange
● Act
● Assert

Helper function:

● Replaces the private function 
getReleases with a mocked 
function that returns the content 
of a .json file



Mock

Testing the LeadTime class

● Arrange

● Act

● Assert

Asserts verifies that Mocked function is 
actually called with expected parameters



Conclusion

● Test Doubles are essential tools for creating robust automated tests that 
verifies focused functionality

● Mocks and stubs are easily implemented in the test code
● Keeps tests fast, obvious and easily readable, making sure your code quality 

stays high



References

● Jest Mock Functions: https://jestjs.io/docs/mock-function-api
● Dependency inversion, dependency injection, and unit tests by Michał Kaczanowicz, 

https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-u
nit-tests-6fbe1c5c9063

● Lesson 2 - Test Doubles by Alessandro Di Gioia, Alcor Academy
● DevOps-metrics-action: https://github.com/stenjo/devops-metrics-action

https://jestjs.io/docs/mock-function-api
https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-unit-tests-6fbe1c5c9063
https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-unit-tests-6fbe1c5c9063
https://github.com/stenjo/devops-metrics-action


Thank you

How to contact me:
sten.johnsen@bouvet.no
@stenjo on Twitter

mailto:sten.johnsen@bouvet.no

