Test doubles

and why they are important

Why Test Doubles?

Some benefits:

Allows us to isolate the system we
are testing from other parts of the
system so that we can investigate
the behaviour of the system under
test

Increases speed of test

|s always available

Avoids undesirable side effects of
interfacing dependant systems
Cheap and easy to implement
Gives us access to data or states
that otherwise might not be available

“Test doubles are
indispensable tools for
testing across architectural
boundaries. Mocking is a
good practice in general.”

Robert C Martin

What are Test Doubles?

Functions or code created with the purpose of verifying behaviour of production code. Test doubles are
used to limit the system under test so that specific behaviour may be verified.

Stubs Mocks
e Responds to calls with pre-programmed e Enables verification of calls they are
output expected to receive.
e Must be set up for each test e Provides a way of verifying behaviour
Fakes Spies

e Handmade Stubs e Handmade Mocks

Commands and Queries

Two categories of abstractions with two types of methods:

e Command methods changes the state of the system, but does not return or
report the state

e Query methods tells us about the state of the system - without modifying it.

Stubs vs Mocks

While a Stub simulates real objects with the minimum methods needed for a test, Mock objects are used
to check if the correct techniques and paths are applied to the objects

We use Stubs for queries: We use Mocks for commands:
e A query just returns data and should not e A command is a method call that changes
affect or change the system under test the state of the system under test
e A stub returns some pre-programmed e A mock is used to confirm that a

output when called in the expected way command has been triggered as expected

Guidelines (1)

Use Test Doubles for classes that you own:

e Implement an abstraction layer (proxy)
between your System under test (SUT)

and external services
API

U
2
_|

Verify as little as possible:

e Specification should be as precise as
possible, but not more precise

Tests that verifies too much tends to check
implementation details rather than behaviour.
This causes the test to be fragile and is more
likely to fail for unrelated changes

Guidelines (2)

Do not use Test Doubles for isolated objects:

e Objects that has no collaborators with
other objects in the system should not be
tested using Mocks or Stubs.

e Aggregates, entities and domain model in
general are typically object without
collaborators.

Don’t add behavior inside Test Doubles:

e Mock objects should not add any
additional complexity to the test
environment

e Behaviour should be obvious and self
explanatory

e Behaviour added to Mock objects might be
a symptom of misplaced responsibilities

Guidelines (3)

Only use Test Doubles for immediate
neighbours:

Objects that has to pass through several
other objects to complete behaviour will be
fragile due to many dependencies over
several abstraction layers.

In these cases the design might be
improved looking for code smells like
Feature Envy, Inappropriate Intimacy and
Message Chain.

The same class CAN act BOTH as a Stub and
a Mock:

What type of Test Double to use is decided
at method level

Depending on the method we are
considering it might be a Stub or a Mock

DevOps Metrics Action

GitHub Action

DevOps Metrics from GitHub
© v1.0.2

Get DevOps Metrics from GitHub project issues
and releases

CodeQL [passing J units-test 'passing 4‘3 Test Coverage 88%

This GitHub Action will calculate a set of DevOps Research and Assessment (DORA) metrics
based on status and dates from commits and issues.

Deploy Rate [3:27 § Lead Time 14.84] Change Failure Rate 14% [Mean time to Restore 3.3

Inputs

repo

Repository from where to read issues and statuses. List one or more repositories, either as one
single string, as an array or all separated by newlines. Valid formats are:

repo: my-repo

Use latest version -

Stars

¥y Star 1 -

Contributors
1206

Links

B stenjo/devops-metrics-action
(® Openissues 0
11 Pull requests 2
[Report abuse

DevOps Metrics from GitHub is not
certified by GitHub. It is provided by a
third-party and is governed by separate
terms of service, privacy policy, and
support documentation.

GitHub Action

e Typescript

e Jesttesting
framework

o 85-90% test
coverage

Architecture

ReleaseAdapter

DeployFrequency

PullRequestAdapter

LeadTime

Action

—

IssuesAdapter

MeanTimeToRestore

ChangeFailureRate

CommitsAdapter

T T T

wv w

w0 N o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Stub

import {Release} from '../src/types/Release’
import fs from 'fs'

Run & Add Only
describe('Mocked Release API should', () => {
Run & Add Only
it('return releases', async () => { —
const r = new ReleaseAdapter(undefined, 'testowner', ['projectl'])
mockedGetReleasesReturns('./tests/test-data/releases.json')

const releases: Array<Release> =
(await r.GetAllReleasesLastMonth()) as Array<Release>

expect(releases. length).toBeGreaterThan(@)
expect(releases[@].author.type).toBe('Bot"')
expect(releases.reverse() [0].name).toBe('v@.0.1"')
}) —
1

function mockedGetReleasesReturns(file: string) {

const getIssuesMock = jest.spyOn(
ReleaseAdapter.prototype as any,
'getReleases’

)

getIssuesMock.mockImplementation((): Promise<Release[]> => {
return Promise.resolve(

JSON.parse(fs.readFileSync(file).toString()) as Release[]

)

Testing the release adapter

<«
/,
/H

/.

3]
}

Arrange
Act
Assert

elper function:

Replaces the private function
getReleases with a mocked
function that returns the content
of a .json file

Mock

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

it('return 8 on pullrequests with base.ref = main and earlier release on other repo', async () => {

3

const pullRequests = [

{
merged_at: '2023-04-28T17:50:53Z', // 30-22 = 8
base: {ref: 'main', repo: {name: 'devops-metrics-action'}},
commits_url: 'path/to/commits/1'
) —_

] as PullReguest[]
const releases = [
{
url: 'https://api.github.com/repos/stenjo/other-repo/releases/101411508',
published_at: '2023-04-29T17:50:53Z'

h

{
url: 'https://api.github.com/repos/stenjo/devops-metrics-action/releases/101411508"
published_at: '2023-04-30T717:50:53Z'

¥
] as Release[]
commitsAdapter.getCommitsFromUrl = jest.fn(

(url: string): Promise<Commit[] | undefined> => {

“Feturn Promise. resolve([

{commit: {committer: {date: '2023-04-22T17:50:53Z'}}}
1 as Commit[])

}
)
const Lt = new LeadTime(pullRequests, releases, commitsAdapter, new Date())

const leadTime = await lt.getlLeadTime()
expect(commitsAdapter.getCommitsFromUrl).toBeCalled()

expect(commitsAdapter.getCommitsFromUrl).lastCalledWith('path/to/commits/1')
expect(leadTime).toBe(8)

Testing the LeadTime class

e Arrange

e Act

/o Assert

Asserts verifies that Mocked function is

actually called with expected parameters

Conclusion

e Test Doubles are essential tools for creating robust automated tests that
verifies focused functionality

e Mocks and stubs are easily implemented in the test code

e Keeps tests fast, obvious and easily readable, making sure your code quality
stays high

References

Jest Mock Functions: https://jestjs.io/docs/mock-function-api

Dependency inversion, dependency injection, and unit tests by Michat Kaczanowicz,

https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-u
nit-tests-6fbe1c5c9063

Lesson 2 - Test Doubles by Alessandro Di Gioia, Alcor Academy
DevOps-metrics-action: https://github.com/stenjo/devops-metrics-action

https://jestjs.io/docs/mock-function-api
https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-unit-tests-6fbe1c5c9063
https://medium.com/@michakaczanowicz/dependency-inversion-dependency-injection-and-unit-tests-6fbe1c5c9063
https://github.com/stenjo/devops-metrics-action

Thank you

How to contact me:
sten.johnsen@bouvet.no
@stenjo on Twitter

mailto:sten.johnsen@bouvet.no

