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Introduction

* Importance of software development approaches
« Maintainable and customizable
« Choose the right approach



Inside-Out Approach

Starts with the domain entity level (bottom-up).
Clear structure from components to the system.
Comprehensive test coverage from the beginning.
Facilitates iterative development and refactoring.
Reusability across different clients

Require significant upfront planning and design.
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Outside-In Approach

Top-down or "mockist TDD"

User experience and external interfaces
Rapid prototyping and iterations
Mock dependencies and implement actual functionality.

Flexibility for customization

Early validation of high-level interactions and integration

Clear understanding of system dependencies.
Alignment with the "You Ain't Gonna Need It" (YAGNI) principle.
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Combining the Approaches

* Integrates Inside-Out and Outside-In.

« Situations where the combined approach is beneficial:
« Large enterprise solutions with existing architectural designs.
« Uncertain requirements or evolving codebase.

* Projects requiring a balance between high-level interactions and component-
level details.
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Choosing the Right Approach

« Select the appropriate approach based on project context
- Nature of the project, team expertise, and available resources.
 Level of certainty in requirements and system architecture.

« Adaptable and flexible.




Conclusion

Inside-Out approach for clean core domain and reusability
Outside-In approach for user-centered design and customization
Combine both approaches for a comprehensive architecture
Understand project requirements when choosing an approach.



Reference

Gamma, E., Helm, R,, Johnson, R., & Vlissides, J. (1994). "Design Patterns: Elements of Reusable Object-Oriented Software." Addison-Wesley Professional.

* Offers design patterns for building modular, maintainable, and customizable software solutions.

Patel, S. (2020). "Maintainability vs. Customizability: Finding the Right Balance in Software Development." [Online Article].
* Explores the trade-off between maintainability and customizability in software development projects.

Johnson, L. (2019). "Inside-Out vs. Outside-In Development: Choosing the Right Approach." [Online Article].

* Provides insights into the characteristics and benefits of both Inside-Out and Outside-In approaches.

Myers, J. (2022). "Combining Inside-Out and Outside-In Approaches for Robust Software Solutions."
* Presents a case study on how a combined approach can create adaptable and user-centric software solutions.

Smith, J. (2018). "Choosing the Right Software Development Approach."” [Online Article].

* Discusses factors to consider when selecting a software development approach.









