

WE MUST BE
CUSTOMER-
CENTRIC

AND DATA- AND MOBILE- [|AND DIGITAL-
CENTRIC CENTRIC CENTRIC

Nl N
. 3

o

o
AND EMPLOYEE- (| AND ... HOLD OWN, I'M
CENTRIC GOING TONEED A

\w\ o

v

RIGGERSHEET OF PAPER. §;

® marketoonist.com

Introduction

* Importance of software development approaches
« Maintainable and customizable
« Choose the right approach

Inside-Out Approach

Starts with the domain entity level (bottom-up).
Clear structure from components to the system.
Comprehensive test coverage from the beginning.
Facilitates iterative development and refactoring.
Reusability across different clients

Require significant upfront planning and design.

Clean/Onion/Hexagonal Architecture

arget Interface

Application service

Domain Entities

Excel PRODUCT
- Name
- Externalld
-Brand
- Producer
- Supplier

Clean/Onion/Hexagonal Architecture

arget Interface

Application service

Womain Entities

Excel PRODUCT

- Name e
- Externalld
- Externalld -grane
. - Brand L=
Aoptasco Product Supplier
o — o - producer ,.,'::;E
— - Supplier “Fe

T —

Product
Service
TR —
Bort

Clean/Onion/Hexagonal Architecture

arget Interface

Domain Entities

Excel PRODUCT
- Name
- Externalld

- Brand
> Product
— App - Producer
—— - Supplier

Product
Service SR

Clean/Onion/Hexagonal Architecture

arget Interface

Application service

\)‘omain Entities

Excel PRODUCT PRODUCT
- Name zHame
- Externalid
- Brand
- Brand G ADOuce,
-Supplier
- Producer image
- Supplier ~Price

- Externalld

Product
Service

Product ——

ARCHITECTURE

patAaC. apt Dceacke| [paTta C

AP
®) & K {’é S
5 s

o 20) @ || ;‘Zc: ki
\

%%C I L) cAcHE

_?;;L g_fL

BUSINESS L
C. woalc ¢
Fa)
THIS 1BN'T
HELPING

MONKEYUSER.COM

Outside-In Approach

Top-down or "mockist TDD"

User experience and external interfaces
Rapid prototyping and iterations
Mock dependencies and implement actual functionality.

Flexibility for customization

Early validation of high-level interactions and integration

Clear understanding of system dependencies.
Alignment with the "You Ain't Gonna Need It" (YAGNI) principle.

Clean/Onion/Hexagonal Architecture

Clean/Onion/Hexagonal Architecture

Clean/Onion/Hexagonal Architecture

Clean/Onion/Hexagonal Architecture

arget Interface

ﬂomain Entities

Excel PRODUCT
- Name
- Externalld
4 -Brand
sopleren Product
o App - Producer
=== - Supplier

Product
Service

THE LIFE OF A SOFTWARE MUCH LATER...
E—MG—IFI\JEEQ |l

OH MY T’VE
DONE iT AGAIN),

CLEAN SLATE. SoLiD
FoUuNDATIONS. THIS TIME
T wWill BUILD THINGS THE

Can you make it do
A, B, C, and D?

And have it done next
week?

\
> @ < < @
Customer-centric Product-centric

outside-in inside-out

Combining the Approaches

* Integrates Inside-Out and Outside-In.

« Situations where the combined approach is beneficial:
« Large enterprise solutions with existing architectural designs.
« Uncertain requirements or evolving codebase.

* Projects requiring a balance between high-level interactions and component-
level details.

Clean/Onion/Hexagonal Architecture

Clean/O

nion/Hexagonal A

arget Interface

Application service

Domain Entities

Excel PRODUCT PRODUCT

- Name

- Externalld -1d
-Brand

e Exte.rnalld
- - Attributes

—

DynamicColumnConfig
- ColumnName
- DataType
-CustomizationOption

——

rchitecture

Clean/Onion/Hexagonal Architecture

arget Interface

Application service

Domain Entities

Excel PRODUCT PRODUCT

~Name
- Externalld -1d

sFeand - Externalld
- Producer

-Type - Attributes

DynamicColumnConfig
- ColumnName
- DataType
-CustomizationOption

T —

Clean/O

nion/Hexagona

arget Interface

e

ol Product

App

Domain Entities

Excel PRODUCT PRODUCT

- Name
- Externalid -1d

- Brand - Externalld
- Producer

iTyde - Attributes

DynamicColumnConfig
- ColumnName
- DataType
-CustomizationOption

| Architecture

Choosing the Right Approach

« Select the appropriate approach based on project context
- Nature of the project, team expertise, and available resources.
 Level of certainty in requirements and system architecture.

« Adaptable and flexible.

Conclusion

Inside-Out approach for clean core domain and reusability
Outside-In approach for user-centered design and customization
Combine both approaches for a comprehensive architecture
Understand project requirements when choosing an approach.

Reference

Gamma, E., Helm, R,, Johnson, R., & Vlissides, J. (1994). "Design Patterns: Elements of Reusable Object-Oriented Software." Addison-Wesley Professional.

* Offers design patterns for building modular, maintainable, and customizable software solutions.

Patel, S. (2020). "Maintainability vs. Customizability: Finding the Right Balance in Software Development." [Online Article].
* Explores the trade-off between maintainability and customizability in software development projects.

Johnson, L. (2019). "Inside-Out vs. Outside-In Development: Choosing the Right Approach." [Online Article].

* Provides insights into the characteristics and benefits of both Inside-Out and Outside-In approaches.

Myers, J. (2022). "Combining Inside-Out and Outside-In Approaches for Robust Software Solutions."
* Presents a case study on how a combined approach can create adaptable and user-centric software solutions.

Smith, J. (2018). "Choosing the Right Software Development Approach."” [Online Article].

* Discusses factors to consider when selecting a software development approach.

