Wrap all primitives and strings

Object Calisthenics

Colin Dexheimer

19. June 2023




Importance Benefits Disadvantages

— Code clarity and maintainability — Code readability and self- — Increased complexity

documentation

— Object-oriented principles — Performance overhead
— Easier modifications and
— Better design by the use of updates
meaningful abstractions
— Reusability by abstracting

behaviour

— Facilitates design patterns

and encapsulation




Importance Benefits Disadvantages

— Code clarity and maintainability — Code readability and self- — Increased complexity

documentation

— Object-oriented principles — Performance overhead
— Easier modifications and
— Better design by the use of updates
meaningful abstractions
— Reusability by abstracting

behaviour

— Facilitates design patterns

and encapsulation




@% Object Calisthenics — Wrap all primitives and strings

- Importance of the Rule

Code clarity and maintainability

{ {
String name; Name name;
age; Age age;
salary; Salary salary;

(String name, , salary) { (Name name, Age age, Salary salary) { Object-oriented principles
.name = name; this.name = name;

is.age = age; t .age = age;
.salary = salary; t .salary = salary;

@ Better design by the use of meaningful abstractions




Importance Benefits Disadvantages

— Code clarity and maintainability — Code readability and self- — Increased complexity

documentation

— Object-oriented principles — Performance overhead
— Easier modifications and
— Better design by the use of updates
meaningful abstractions
— Reusability by abstracting

behaviour

— Facilitates design patterns

and encapsulation




@% Object Calisthenics — Wrap all primitives and strings

 Code readability and
self-documentation { - :

String name; Name name;

oo

age; Ys Age age;
salary; ri Salary salary;
ng n¢
(String name, salary) { 1 (Name name, Age age, Salary salary
this.name = name; ’ this.name = name;
this.age = age; this.age = age;

s - . lary
Readability this.salary = salary;

this.salary = salary;

String O {
name.getFullName();

O {
age.getValue();

Self-documentation 01

salary; salary.getValue();




@% Object Calisthenics — Wrap all primitives and strings

o Easier modifications
and updates

oo

C Modifications and Updates

{
String name;
age;

salary;

this.salary += amount;

(

amount) {

{
Name name;
Age age;

Salary salary;

(Salary increaseAmount) {
this.salary.increase(increaseAmount);

{

value;

( value) {
this.value = value;

(Salary amount) {

this.value += amount.getValue();




@% Object Calisthenics — Wrap all primitives and strings

Reusability by abstracting
behaViour Salary (Salary currentSalary);

o

{ percentage;

Name name;
Age age; ( percentage) {

Salary salary; this.percentage = percentage;

Salary (Salary currentSalary) {
(Name name, Age age, Salary salary) {
= currentSalary.getValue() * percenta
.hame = name;
(currentSalary.getValue() + increaseAmount
.age = age;

zfi Reusabi"ty .salary = salary;

amount;

(PromotionStrategy promotionStrategy) {
.salary = promotionStrategy.calculateNewSalary(sal amount) {

this.amount = amount;

Salary (Salary currentSalary) {

(currentSalary.getValue() + amount);




@% Object Calisthenics — Wrap all primitives and strings

~Facilitates design patterns
and encapsulation

oo

8 Design patterns and encapsulation

{
Name name;
Age age;
Salary salary;

(Name name, Age age, Salary salary) {
name = name;
.age = age;
salary = salary;

(PromotionStrategy promotionStrategy) {
salary promotionStrategy.calculateNewSalary (sal

{
Salary (Salary currentSalary);

percentage;
( percentage) {

this.percentage = percentage;

Salary (Salary currentSalary) {
= currentSalary.getValue() * percenta

(currentSalary.getValue() + increaseAmount

amount;
amount) {

this.amount = amount;

Salary (Salary currentSalary) {

(currentSalary.getValue() + amount);




Importance Benefits Disadvantages

— Code clarity and maintainability — Code readability and self- — Increased complexity
documentation fdfadsfasdfadsf
— Object-oriented principles
— Easier modifications and — Performance overhead
— Better design by the use of updates
meaningful abstractions
— Reusability by abstracting

behaviour

— Facilitates design patterns

and encapsulation




@% Object Calisthenics — Wrap all primitives and strings

- Disadvantages of the Rule

Every advantage has its disadvantage

Increased complexity

Performance overhead




