
Test Driven 
Development
A short recap of what we learned



Benefits of TDD?

- Design emerges
- Test as documentation
- Faster debugging
- Courage through safety net



3 Basic Steps of TDD

1. Write a failing Test
2. Write just enough code to pass that failing 

test
3. Refactor your test



TDD Habits
F.I.R.S.T.

- Fast 
- Run Tests often -> they have to run fast

- Isolate
- Tests work in any order

- Repeatable
- Test always have the same result (no flaky tests)

- Self validating
- No Human interpretation necessary -> green or red!

- Timely
- Write at the right time -> before the code you want to test

Also: 

Test should only check ONE single behaviour with only ONE logical assertion per test



How to approach TDD?
Baby steps

- Fake implementation
- Obvious implementation
- Triangulate with more tests

Behaviour not implementation

- We don’t care about the details -> details may change

Also:

- Commit often
- Let IDE take over refactoring



Evolve Code with TPP
Transformation Priority Premise -> What is the obvious implementation?

Providing Guidelines for Obvious (most simple) Implementation

- Start simple
- transform code to more complex code if needed



Object Calisthenics
kalos and sthenos -> Beauty and Strength

Build “strong and beautiful” Code -> Make your code easier to understand and maintain



Personal Conclusion
New approaches for me -> Mob and TDD

- In theory, tried out, but never with a “correct” approach

Big improvements in Mob

See the value of TDD more clearly thanks to 3 Step Rule and applying it myself

- Thinking Changed: Writing a Test first is not slower -> helps us do the right thing, in the right way
- Helpful Guidelines



Thank You!


