Test Driven

Development

A short recap of what we learned

Benefits of TDD?

Design emerges
Test as documentation
Faster debugging

Courage through safety net

3 Basic Steps of TDD

1,
2 |
TEST FAILS
/ \ 3,
IS @

‘DY
REFACTOR TEST PASSES

Write a failing Test

Write just enough code to pass that failing
test

Refactor your test

TDD Habilts

F.I.R.S.T.

Fast
- Run Tests often -> they have to run fast
- lIsolate
- Tests work in any order
- Repeatable
- Test always have the same result (no flaky tests)
- Self validating
- No Human interpretation necessary -> green or red!
- Timely
- Write at the right fime -> before the code you want to test

Also:

Test should only check ONE single behaviour with only ONE logical assertion per test

How to approach TDD?e

Baby steps

- Fake implementation
- Obvious implementation
- Triangulate with more tests

Behaviour not implementation
- We don't care about the details -> details may change
Also:

- Commit often
- Let IDE take over refactoring

Evolve Code with TPP

Transformation Priority Premise -> What is the obvious implementation?
Providing Guidelines for Obvious (most simple) Implementation

- Start simple
- transform code to more complex code if needed

TRANSFORMATION STARTING CODE FINAL CODE

1 {=>nil return nil

2 nil => constant return nil return “1”

3 constant => constant+ return “1” return "1 + 2"

4 constant => scalar return “1” + “2” return argument

5 statement => statements return argument return arguments

6 unconditional => conditional return arguments if (condition)return arguments
7 scalar => array dog [dog, cat]

8 array => container [dog, cat] {dog = “DOG”, cat = “CAT”}
9 statement => recursion a+b a + recursion

10 conditional => loop if (condition) while (condition)

11 recursion => tail recursion a + recursion recursion

12 expression => function today - birthday CalculateRge ()

13 variable => mutation day var day = 10; day = 11;

-
N

switch case

Object Calisthenics

kalos and sthenos -> Beauty and Strength

Only one level of indentation per method

Don’t use the ELSE keyword

Wrap all primitives and strings

First class collections (wrap all collections)

Only one dot per line deg-Bedy-TailWag => dog.ExpressHappiness ()
No abbreviations

Keep all entities small
[10 files per package, 50 lines per class, 5 lines per method, 2 arguments per method]
No classes with more than two instance variables

No public getters/setters/properties

2 JN N

vl

Build “strong and beautiful” Code -> Make your code easier to understand and maintain

Personal Conclusion

New approaches for me -> Mob and TDD
- Intheory, tried out, but never with a “correct” approach

Big improvements in Mob

See the value of TDD more clearly thanks to 3 Step Rule and applying it myself

- Thinking Changed: Writing a Test first is not slower -> helps us do the right thing, in the right way
- Helpful Guidelines

