
Solid
Principles

and
Decorator

Pattern

Walter Moscatelli
walter.moscatelli@eoc.ch

Recipe

Ingredients :

• Inheritance and Exploding class hierarchy

• Design decorator pattern

• Practical application of this pattern

• Solid principles

• Conclusion

Inheritance
When object-oriented programming was
introduced, inheritance was the primary pattern
used to extend object functionality.

It has been shown that extending objects using
inheritance often results in an exploding class
hierarchy, known as Exploding class hierarchy.

Exploding class
hierarchy

Design
pattern
Decorator

• The decorator is a structural design pattern that
uses composition instead of inheritance

• It provides a flexible alternative to sub-classing for
extending functionality at runtime

• Component — This is basically an interface that describers behavior
of concrete component as well as decorator. Depending on the
existing project structure, this could be an interface or abstract class.

• ConcreteComponent — The actual object in which the new
functionalities can be added dynamically. We can also wrap up
decorators with other decorators.

• Decorator — Defines the interface for all the dynamic functionalities
that can be added to the concrete component. The decorator IS a
component and also HAS a component. This way components and
decorators are interchangeable.

• ConcreteDecorator — Describes all the functionalities that can be
added to the concrete components.

Kebabbaro

The main challenge is to create a system
that allows for:

• Easy addition of new ingredients.

• Dynamic pricing based on kebab type
and added condiments.

• Ensuring that changes to one part of the
code do not affect other parts.

• Minimizing code duplication and
adhering to the Open-Closed Principle.

Kebabbaro

• Kebab

• Kebab_Cipolla subclass of Kebab con Cipolla

• Kebab_Piccante subclass of Kebab con Piccante

• Kebab_CipollaPiccante subclass of Kebab con
Cipolla e Piccante

• Falafel

• Falafel_Cipolla subclass of Falafel con Cipolla

• Falafel_Piccante subclass of Falafel con Piccante

• Falafel_CipollaPiccante subclass of Falafel con
Cipolla e Piccante

Exploding
class
hierarchy

Actually we have 8 classes.

What happens if we add yogurt sauce or chips?

Let's try to solve this problem with the decorator
pattern

Component : Pasto

We need a class to model the generic meal

public abstract class Pasto {

String nome = "";

public String getNome() {

return nome;

}

public abstract double getPrezzo();

}

Decorator
SupplementiDecorator

We need a class for ingredient additions to our
product which will be the basis for our Decorator

• public abstract class SupplementiDecorator extends
Pasto {

• protected Pasto pasto;

• @Override

• public abstract String getNome();

• }

ConcreteComponent:

Kebab extends Pasto

public class Kebab extends Pasto {

 public Kebab() {

 nome = " Kebab ";

 }

@Override

 public double getPrezzo() {

 return 5.50;

 }

}

ConcreteComponent:

Falafel extends Pasto

public class Falafel extends Pasto {

 public Falafel() {

 nome = " Falafel ";

 }

@Override

 public double getPrezzo() {

 return 6.00;

 }

}

ConcreteDecorator
Cipolla

public class ExtraCipollaDecorator extends SupplementiDecorator {

public ExtraCipollaDecorator(Pasto pasto){

this.pasto = pasto;

}

@Override

public String getNome() {

return pasto.getNome()+ " con cipolla";

}

@Override

public double getPrice() {

return pasto.getPrice()+0.20;

}

}

ConcreteDecorator
Piccante

• public class ExtraPiccanteDecorator extends SupplementiDecorator {

• public ExtraPiccanteDecorator(Pasto pasto){

• this.pasto = pasto;

• }

• @Override

• public String getNome() {

• return pasto.getNome()+ " con piccante";

• }

• @Override

• public double getPrice() {

• return pasto.getPrice()+0.40;

• }

• }

Pasto kebab = new Kebab();

System.out.println("Prodotto:" + kebab +" di prezzo " + String.format("%.2f", kebab.getPrice()));

Pasto falafel = new Falafel();

Pasto kebabconCipolla = new ExtraCipollaDecorator(kebab);

System.out.println("Prodotto:" + kebabconCipolla.getProductName() +" di prezzo " +
String.format("%.2f", kebabconCipolla.getPrice()));

Pasto kebabconCipollaePiccante = new ExtraPiccanteDecorator (new ExtraCipollaDecorator
(kebab));

System.out.println("Prodotto:" + kebabconCipollaePiccante.getProductName() +" di prezzo " +
String.format("%.2f", kebabconCipollaePiccante.getPrice()));}

Open-Closed Principle: The Decorator pattern adheres to the Open-Closed
Principle, which means that we can extend the functionality of objects without
modifying their source code. This promotes code stability and reduces the risk of
introducing new bugs when adding new features.

Single Responsibility Principle: Each decorator class has a single responsibility,
which makes the code more maintainable and easier to understand. This aligns
with the Single Responsibility Principle (SRP), one of the SOLID principles of
object-oriented design.

https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Single-responsibility_principle

Single
Responsibility
Principle (SRP)

Single
Responsibility
Principle (SRP)

Single Responsibility Principle
(SRP): Each decorator is responsible
for a single aspect of behavior,
ensuring that each class has a
single reason to change.

Example: A meal class manage a
product, while a separate
Decorator add ingredients

Open/Closed
Principle

(OCP)

Open/Closed Principle (OCP)

The component is open for extension through decorators but closed for
modification, allowing you to add new behaviors without changing
existing code.

Example: An ExtraCipollaDecorator can be added to product without
modifying the original Kebab class.

Liskov
Substitution

Principle
(LSP)

Liskov Substitution Principle (LSP)

Decorators and the original component are interchangeable because
they adhere to the same interface.

Example: A Kebab can be substituted from Pasto without affecting the
client code.

Interface
Segregation

Principle
(ISP)

Interface Segregation Principle (ISP)

The interface for the component is kept simple and focused, avoiding
the need for clients to depend on methods they don't use.

Example: The Pasto interface has a single getPrezzo method, avoiding
unnecessary complexity.

Dependency
Inversion
Principle

(DIP)

Dependency Inversion Principle (DIP)

High-level modules depend on abstractions (interfaces) rather than
concrete implementations, allowing decorators to be easily introduced.

Example: Products code depends on the Pasto interface, allowing the
use of different decorators (e.g., ExtraCipollaDecorator,
ExtraPiccanteDecorator) without changing the product code.

Advantages

• Flexibility and Extensibility: One of the key advantages of the decorator pattern is its ability to add new
behaviors or modify existing ones without altering the underlying object's structure. This flexibility allows
developers to extend functionality on-the-fly, making it easier to adapt to changing requirements.

• Adherence to the Open/Closed Principle: The decorator pattern adheres to the Open/Closed Principle, which
states that software entities should be open for extension but closed for modification. By using decorators, we can
introduce new features without modifying the original classes or interfaces.

• Modular and Reusable: Decorators are modular and can be reused across different components. This modularity
promotes code reusability and reduces code duplication, leading to cleaner and more maintainable code.

• Composable: Decorators can be composed in various combinations to achieve different behaviors. This
composability allows developers to mix and match decorators to create complex functionality without introducing
code bloat.

Limitations

• Increased Complexity: While decorators provide flexibility, they can also introduce complexity,
especially when many decorators are in the system. Developers need to be mindful of the order in
which decorators are applied and how they interact with each other.

• Overhead and Performance Impact: Each decorator introduces an additional layer of indirection,
which can lead to performance overhead. This impact may be negligible in most cases, but it's
important to consider the potential performance implications in performance-critical scenarios.

• Confusion with Inheritance: The decorator pattern can sometimes be confused with inheritance, as
both involve extending behavior. However, inheritance is a static relationship, while decoration is
dynamic. Developers should carefully choose between the two based on the specific use case.

• Limited Applicability: The decorator pattern is not always the best solution for every scenario. For
example, when behavior changes require modifications to the object's state or internal data, the
decorator pattern may not be suitable.

Conclusion

Let's also let these principles and the decorator pattern help us on our
journey as developers

But let's always remember to use our heads and not apply patterns and
principles without thinking about it otherwise we could find ourselves
with antipatterns or other code smells that we wanted to avoid.

Questions ?

• «Metto tutto ?»

• «Vuoi piccante ?»

• «Cibola vuoi?»

Thank you

Thanks to all the kebab
shops who made my
adolescence better

	Diapositiva 1: Solid Principles and Decorator Pattern
	Diapositiva 2: Recipe
	Diapositiva 3: Inheritance
	Diapositiva 4: Exploding class hierarchy
	Diapositiva 5: Design pattern Decorator
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8: Kebabbaro
	Diapositiva 9: Kebabbaro
	Diapositiva 10: Exploding class hierarchy
	Diapositiva 11: Component : Pasto
	Diapositiva 12: Decorator SupplementiDecorator
	Diapositiva 13: ConcreteComponent:
	Diapositiva 14: ConcreteComponent:
	Diapositiva 15: ConcreteDecorator Cipolla
	Diapositiva 16: ConcreteDecorator Piccante
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19: Single Responsibility Principle (SRP)
	Diapositiva 20: Single Responsibility Principle (SRP)
	Diapositiva 21: Open/Closed Principle (OCP)
	Diapositiva 22: Open/Closed Principle (OCP)
	Diapositiva 23: Liskov Substitution Principle (LSP)
	Diapositiva 24: Liskov Substitution Principle (LSP)
	Diapositiva 25: Interface Segregation Principle (ISP)
	Diapositiva 26: Interface Segregation Principle (ISP)
	Diapositiva 27: Dependency Inversion Principle (DIP)
	Diapositiva 28: Dependency Inversion Principle (DIP)
	Diapositiva 29: Advantages
	Diapositiva 30: Limitations
	Diapositiva 31: Conclusion
	Diapositiva 32: Questions ?
	Diapositiva 33: Thank you

