
REFACTORING
of a long and complex legacy class

Ermanno Scanagatta
github.com/ermannos

twitter.com/@escanagatta



Introduction

This presentation is about the refactoring of a class called CompositeTransformer,
which has a single complex method transform whose intent is to interpret all the data 
about the clinical path of a patient during his stay in hospital (read from an external API) 
and produce a snapshot in a certain moment in time (exposed on a public API).

This is legacy code:

• no tests
• no specifications
• no documentation
• one single developer/maintainer
• difficult to understand
• god method (>400 lines)

This code is in PROD since 2017 and has no known bugs



Step1 – Setup the Oracle Pattern

I want to keep the original implementation and work on a duplication of it

Before refactoring I need all the tests to ensure that the behaviour is not changing

1. Break external dependencies

2. Stub source data to be transformed (trying to cover every possible data variation)

3. Stub external data from other sources

4. Extend classes to make them comparable (string conversion, sorting, etc.)

5. Write characterization tests 

6. Coverage <100% is acceptable if not 
covering external calls



Step 2 - Mutation coverage

Check coverage quality using Mutation testing

Benefits:

• ensure test coverage is solid with respect to to 
code mutations

• integrate tests with possible missing test inputs



Step 3 – Code smells

Working on the new duplicated implementation:

• identify code smells and annotate the code

• make simple changes that won't affect code 
integrity (e.g.: replace primitives with constants, 
rename variables)



Step 4 – Class refactoring

The behaviour is protected by the tests, is now time to start the refactoring

• isolate bounded responsibilities

• extract methods or classes (using IDE)

• keep classes small and significant 
(single responsibility principle)

• use speaking names

Iterate onthis steps if necessary



Step 5 – Write unit tests

After the split of the big method in smaller classes and methods we can start writing unit tests.

Goals of this step are:

• write unit tests that cover each class functionality

• tests should help documenting the behaviour 

• target 100% coverage



Final considerations

v High coverage level is not enough for stay safe with a 
refactoring

v Mutation testing is a real game-changer, confidence rises up

v With the back covered, craftman enjoys also an hard 
renovation!



Thank you!


