
EMBRACING OBJECT CALISTHENICS
BEYOND GETTERS AND THE POWER OF "TELL, DON'T ASK"

Patrick Ronecker



OVERVIEW OF OBJECT CALISTHENICS

 Programming exercise

 Aimed at improving object-oriented design skills

 Focuses on writing clean & maintainable code

 At first follow the rules strictly to later break them

 Additional rule: Use TDD in combination for feedback

Rules:

1. Only one level of indentation per method

2. Don’t use the ELSE keyword

3. Wrap all primitives and strings (wrap primitiv types in 
classes)

4. First class collections (wrap collections in classes)

5. One dot per line

6. Don’t abbreviate

7. Keep all entities small

8. No classes with more than two instance variables

9. No getters/setters/properties

10. All classes must have state



EMBRACING RULE 9: NO GETTERS/SETTERS/PROPERTIES.

 Avoidance of Direct Access of Internals

 Encourage Behavior Methods

 Shift from Data-Centric to Behavior-Centric

 Forces you to really think object-oriented

(Network of entities that collaborate by passing messages)



BASIC EXAMPLE – AVOIDING GETTERS FOR TESTS

Instead of using getters: Use object equality:



GOING FURTHER –THE "TELL, DON'T ASK" PRINCIPLE

 Telling objects what to do, rather than asking them for data and 

acting upon that data externally

 shifts focus

o from procedural style (asking for data and then processing it)

o to object-oriented style (directing the object to perform an action)

 Aligns perfectly with the "No Getters/Setters" rule



"TELL, DON'T ASK": EXAMPLE



"TELL, DON'T ASK": BENEFITS & CHALLANGES

Benefits

 Enhances Encapsulation

 Reduces Coupling

 Improves Code Maintainability

 Promotes Clearer Intentions in Code

 Supports Better Abstraction

 Fosters More Robust Object Model

 Facilitates Testing

Challenges

 Learning Curve

 Conceptual Shift

 Increased Design Effort and potential Over-
Engineering

 Difficult to fit in an existing codebase



BEST PRACTICES & FINAL THOUGHTS

 There is nothing wrong with writing a getter method

 Use both approaches thoughtfully

 Avoid poor rationale

 Make a deliberate choice and document it

 There is No 'One-Size-Fits-All'-Solution

 Stay Open to New Styles or Alternatives



THANK YOU 

FOR YOUR 

ATTENTION

PATRICK.RONECKER@CSS.CH



SOURCES

 Agile Technical Practices Distilled by Pedro Moreira 

Santos, Marco Consolaro, Alessandro Di Gioia

 https://martinfowler.com/bliki/TellDontAsk.html

 https://martinfowler.com/bliki/GetterEradicator.html

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/GetterEradicator.html

	Folie 1: Embracing Object Calisthenics Beyond Getters and the Power of "Tell, Don't Ask"
	Folie 2: Overview of Object Calisthenics
	Folie 3: Embracing Rule 9: No getters/setters/properties.
	Folie 4: Basic Example – Avoiding getters for tests
	Folie 5: Going Further – The "TEll, Don't ask" Principle
	Folie 6: "TEll, Don't ask": Example
	Folie 7: "TEll, Don't ask": Benefits & Challanges
	Folie 8: Best practices & FINAL THOUGHTS
	Folie 9: Thank you for your attention
	Folie 10: Sources

