
Patrick Ronecker

Linking Cohesion and Coupling
to SOLID
How high cohesion and low coupling leads to code which follows
the SOLID principles. And the other way around.

Agenda

• Theory

• Coupling & Cohesion

• SOLID

• Examples

• Final Thoughts

Cohesion
says how strongly related and
coherent are the
responsibilities within modules
(classes) of an application

is the degree of interdependence
between modules (classes) of an
application

Coupling&

HIGH LOW

Single Responsibility Principle (SRP)

• A class should have only one reason to change

• Focus only on one job or responsibility

• Definition of a highly cohesive class

• High cohesion naturally aligns with the SRP

Open/Closed Principle (OCP)
Software entities should be open for extension but closed for modification.

• Low coupled design gives us flexibility and maintainability

• No tight link between software entities

• Highly cohesive classes are easier to extend

• Extension is possible without modifying existing code

Liskov Substitution Principle (LSP)
Objects of a superclass should be replaceable with objects of a subclass
without affecting the correctness of the program.

• Helps us with loose coupling

• Reduction of side effects of each component (Goal of LSP)

• High Cohesion and low coupling leads to a design of small and independent
components, which are grouped by their functionality

Interface Segregation Principle (ISP)
No client should be forced to depend on methods it does not use.

• Supported by high cohesion in the design of interfaces

• Interfaces focused around a specific set of related functionalities

• Clients only need to know the relevant interfaces

• Leeds to reduced coupling and increased coherence

Dependency Inversion Principle (DIP)
High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Abstractions should not depend upon details, but details should depend upon abstractions.

• Low coupling is a fundamental aspect

• Interaction between classes through abstract interfaces instead of concrete
implementations

• Reduction of direct dependencies

Example 1: SRP & OCP
E-commerce System

SRP
Cohesion

Coupling

OCP

Example 2: DIP
Lightswitch

DIP
Coupling

Example 3: LSP
Rectangle & Square

LSP
Cohesion Coupling

Example 4: ISP
User Interface Component Library

ISP
Cohesion Coupling

Final Thoughts
• We aim for high cohesion and fight against coupling

• No coupling is not achievable

• It is always a balancing act

• Yin-yang of software-design

Any questions?

patrick.ronecker@css.ch

Sources:

• Agile Technical Practices Distilled by Pedro Moreira Santos, Marco Consolaro, Alessandro Di Gioia

• https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29

• https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html

• https://blog.cleancoder.com/uncle-bob/2020/10/18/Solid-Relevance.html

Thank you for your attention.

mailto:patrick.ronecker@css.ch
https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html
https://blog.cleancoder.com/uncle-bob/2020/10/18/Solid-Relevance.html

